Interpretable Predictive Modeling for Climate Variables with Weighted Lasso

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The predictive Lasso

We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an constraint on the coefficient vec...

متن کامل

Lasso Methods for Gaussian Instrumental Variables Models

In this note, we propose to use sparse methods (e.g. LASSO, Post-LASSO, √ LASSO, and Post√ LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, in the canonical Gaussian case. The methods apply even when p is much larger than the sample size, n. We derive asymptotic distributions for the resulting IV estim...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Designing and Evaluating an Interpretable Predictive Modeling Technique for Business Processes

Process mining is a field traditionally concerned with retrospective analysis of event logs, yet interest in applying it online to running process instances is increasing. In this paper, we design a predictive modeling technique that can be used to quantify probabilities of how a running process instance will behave based on the events that have been observed so far. To this end, we study the f...

متن کامل

Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.

We propose a statistical method based on graphical Gaussian models for estimating large gene networks from DNA microarray data. In estimating large gene networks, the number of genes is larger than the number of samples, we need to consider some restrictions for model building. We propose weighted lasso estimation for the graphical Gaussian models as a model of large gene networks. In the propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33011385